3.708 \(\int \frac{(c+d x)^{3/2}}{\sqrt{a+b x}} \, dx\)

Optimal. Leaf size=113 \[ \frac{3 \sqrt{a+b x} \sqrt{c+d x} (b c-a d)}{4 b^2}+\frac{3 (b c-a d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{4 b^{5/2} \sqrt{d}}+\frac{\sqrt{a+b x} (c+d x)^{3/2}}{2 b} \]

[Out]

(3*(b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(4*b^2) + (Sqrt[a + b*x]*(c + d*x)^(3/2))/(2*b) + (3*(b*c - a*d)^2
*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(4*b^(5/2)*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.0498393, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {50, 63, 217, 206} \[ \frac{3 \sqrt{a+b x} \sqrt{c+d x} (b c-a d)}{4 b^2}+\frac{3 (b c-a d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{4 b^{5/2} \sqrt{d}}+\frac{\sqrt{a+b x} (c+d x)^{3/2}}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(3/2)/Sqrt[a + b*x],x]

[Out]

(3*(b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(4*b^2) + (Sqrt[a + b*x]*(c + d*x)^(3/2))/(2*b) + (3*(b*c - a*d)^2
*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(4*b^(5/2)*Sqrt[d])

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(c+d x)^{3/2}}{\sqrt{a+b x}} \, dx &=\frac{\sqrt{a+b x} (c+d x)^{3/2}}{2 b}+\frac{(3 (b c-a d)) \int \frac{\sqrt{c+d x}}{\sqrt{a+b x}} \, dx}{4 b}\\ &=\frac{3 (b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b^2}+\frac{\sqrt{a+b x} (c+d x)^{3/2}}{2 b}+\frac{\left (3 (b c-a d)^2\right ) \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx}{8 b^2}\\ &=\frac{3 (b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b^2}+\frac{\sqrt{a+b x} (c+d x)^{3/2}}{2 b}+\frac{\left (3 (b c-a d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{4 b^3}\\ &=\frac{3 (b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b^2}+\frac{\sqrt{a+b x} (c+d x)^{3/2}}{2 b}+\frac{\left (3 (b c-a d)^2\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{4 b^3}\\ &=\frac{3 (b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b^2}+\frac{\sqrt{a+b x} (c+d x)^{3/2}}{2 b}+\frac{3 (b c-a d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{4 b^{5/2} \sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 0.277636, size = 109, normalized size = 0.96 \[ \frac{\sqrt{c+d x} \left (\sqrt{a+b x} (-3 a d+5 b c+2 b d x)+\frac{3 (b c-a d)^{3/2} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )}{\sqrt{d} \sqrt{\frac{b (c+d x)}{b c-a d}}}\right )}{4 b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(3/2)/Sqrt[a + b*x],x]

[Out]

(Sqrt[c + d*x]*(Sqrt[a + b*x]*(5*b*c - 3*a*d + 2*b*d*x) + (3*(b*c - a*d)^(3/2)*ArcSinh[(Sqrt[d]*Sqrt[a + b*x])
/Sqrt[b*c - a*d]])/(Sqrt[d]*Sqrt[(b*(c + d*x))/(b*c - a*d)])))/(4*b^2)

________________________________________________________________________________________

Maple [B]  time = 0., size = 308, normalized size = 2.7 \begin{align*}{\frac{1}{2\,b}\sqrt{bx+a} \left ( dx+c \right ) ^{{\frac{3}{2}}}}-{\frac{3\,ad}{4\,{b}^{2}}\sqrt{bx+a}\sqrt{dx+c}}+{\frac{3\,c}{4\,b}\sqrt{bx+a}\sqrt{dx+c}}+{\frac{3\,{a}^{2}{d}^{2}}{8\,{b}^{2}}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\ln \left ({ \left ({\frac{ad}{2}}+{\frac{bc}{2}}+bdx \right ){\frac{1}{\sqrt{bd}}}}+\sqrt{d{x}^{2}b+ \left ( ad+bc \right ) x+ac} \right ){\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{dx+c}}}{\frac{1}{\sqrt{bd}}}}-{\frac{3\,adc}{4\,b}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\ln \left ({ \left ({\frac{ad}{2}}+{\frac{bc}{2}}+bdx \right ){\frac{1}{\sqrt{bd}}}}+\sqrt{d{x}^{2}b+ \left ( ad+bc \right ) x+ac} \right ){\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{dx+c}}}{\frac{1}{\sqrt{bd}}}}+{\frac{3\,{c}^{2}}{8}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\ln \left ({ \left ({\frac{ad}{2}}+{\frac{bc}{2}}+bdx \right ){\frac{1}{\sqrt{bd}}}}+\sqrt{d{x}^{2}b+ \left ( ad+bc \right ) x+ac} \right ){\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{dx+c}}}{\frac{1}{\sqrt{bd}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(3/2)/(b*x+a)^(1/2),x)

[Out]

1/2*(d*x+c)^(3/2)*(b*x+a)^(1/2)/b-3/4/b^2*(d*x+c)^(1/2)*(b*x+a)^(1/2)*a*d+3/4/b*(d*x+c)^(1/2)*(b*x+a)^(1/2)*c+
3/8/b^2*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)/(b*x+a)^(1/2)*ln((1/2*a*d+1/2*b*c+b*d*x)/(b*d)^(1/2)+(d*x^2*b+(a
*d+b*c)*x+a*c)^(1/2))/(b*d)^(1/2)*a^2*d^2-3/4/b*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)/(b*x+a)^(1/2)*ln((1/2*a*
d+1/2*b*c+b*d*x)/(b*d)^(1/2)+(d*x^2*b+(a*d+b*c)*x+a*c)^(1/2))/(b*d)^(1/2)*a*d*c+3/8*((b*x+a)*(d*x+c))^(1/2)/(d
*x+c)^(1/2)/(b*x+a)^(1/2)*ln((1/2*a*d+1/2*b*c+b*d*x)/(b*d)^(1/2)+(d*x^2*b+(a*d+b*c)*x+a*c)^(1/2))/(b*d)^(1/2)*
c^2

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.14878, size = 711, normalized size = 6.29 \begin{align*} \left [\frac{3 \,{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt{b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \,{\left (2 \, b d x + b c + a d\right )} \sqrt{b d} \sqrt{b x + a} \sqrt{d x + c} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} x\right ) + 4 \,{\left (2 \, b^{2} d^{2} x + 5 \, b^{2} c d - 3 \, a b d^{2}\right )} \sqrt{b x + a} \sqrt{d x + c}}{16 \, b^{3} d}, -\frac{3 \,{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt{-b d} \arctan \left (\frac{{\left (2 \, b d x + b c + a d\right )} \sqrt{-b d} \sqrt{b x + a} \sqrt{d x + c}}{2 \,{\left (b^{2} d^{2} x^{2} + a b c d +{\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right ) - 2 \,{\left (2 \, b^{2} d^{2} x + 5 \, b^{2} c d - 3 \, a b d^{2}\right )} \sqrt{b x + a} \sqrt{d x + c}}{8 \, b^{3} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(3*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*
d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x) + 4*(2*b^2*d^2*x + 5*b^2*c*d
 - 3*a*b*d^2)*sqrt(b*x + a)*sqrt(d*x + c))/(b^3*d), -1/8*(3*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(-b*d)*arctan(
1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*
x)) - 2*(2*b^2*d^2*x + 5*b^2*c*d - 3*a*b*d^2)*sqrt(b*x + a)*sqrt(d*x + c))/(b^3*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c + d x\right )^{\frac{3}{2}}}{\sqrt{a + b x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(3/2)/(b*x+a)**(1/2),x)

[Out]

Integral((c + d*x)**(3/2)/sqrt(a + b*x), x)

________________________________________________________________________________________

Giac [B]  time = 1.89981, size = 327, normalized size = 2.89 \begin{align*} -\frac{\frac{48 \,{\left (\frac{{\left (b^{2} c - a b d\right )} \log \left ({\left | -\sqrt{b d} \sqrt{b x + a} + \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt{b d}} - \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \sqrt{b x + a}\right )} c{\left | b \right |}}{b^{2}} - \frac{{\left (\sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \sqrt{b x + a}{\left (\frac{2 \,{\left (b x + a\right )}}{b^{4} d^{2}} + \frac{b c d - 5 \, a d^{2}}{b^{4} d^{4}}\right )} + \frac{{\left (b^{2} c^{2} + 2 \, a b c d - 3 \, a^{2} d^{2}\right )} \log \left ({\left | -\sqrt{b d} \sqrt{b x + a} + \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt{b d} b^{3} d^{3}}\right )} d{\left | b \right |}}{b^{3}}}{48 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(3/2)/(b*x+a)^(1/2),x, algorithm="giac")

[Out]

-1/48*(48*((b^2*c - a*b*d)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/sqrt(b*d)
- sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a))*c*abs(b)/b^2 - (sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(
b*x + a)*(2*(b*x + a)/(b^4*d^2) + (b*c*d - 5*a*d^2)/(b^4*d^4)) + (b^2*c^2 + 2*a*b*c*d - 3*a^2*d^2)*log(abs(-sq
rt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sqrt(b*d)*b^3*d^3))*d*abs(b)/b^3)/b